Elastic

A simple and modern
dashboard for FRC

Team 353 - The POBots

Driver Dashboard Options

SmartDashboard

Pros: Tons of different widgets
Cons: Lacks customization, no longer being maintained by WPILib

Shuffleboard

Pros: Ability to arrange cards in a grid, code generated layouts
Cons: Extremely slow, no longer maintained

Problems with Shuffleboard

No longer maintained by the creators of WPILIb
Very slow, leaks memory, and has many unpatched bugs
Outdated: widgets such as swerve drive visualization do not exist

Ul is no longer elegant nor modern compared to today’s standards

What is Elastic?

45

2 90

A Shuffleboard alternative made i:f’y
Nadav from Team 353 —

Pitch

239999771118164

Features a modern UI, many new

Elastic

Field
C P
- e
C—g——
Compressor Voltage
10.78 V
L A——

4V [P 85V 1075V 13V

widgets, and backwards compatibility

Match Time

with the Shuffleboard API

Created with Flutter and the Dart
programming language

Bottom Switch FMSInfo

HHH Elimination match 6 (replay 1)
v FMS Connected " DriverStation Connected
Robot State: Teleoperated

Team 353

200 =

150 -

100 -

50 +

« + -

Drivetrain

| =X

Current (A)

Reason for the Name

Elastic is an alternative to Shuffleboard, and shuffleboard pucks
collide in perfectly elastic collisions

Elastic materials are very flexible

Video Demo

Why Flutter?

- Native multiplatform support, makes
code easier to maintain

* |ts material framework is very easy to
work with and makes apps much easier
to look at

» Lots of built in widgets, along with many
open-source packages for custom
features

» Very fast

Flutter

Goals

Intuitive and modern design

Fast and efficient for both the computer and
the network

Well documented

Easy for teams to adapt to

Early Prototypes

- Tested dragging and snapping
boxes to a grid

- Made sure that a reliable
connection to Network Tables
was possible

Ul Design
Iterations

File Edit Help

Network Tables: Connected

File Edit Help

Joystick Left Y Joystick Right X Joystick Right Y Joystick Left Y.
0.0000 0.0000
-1.00 -0.50 0.00 050 100 -1.00 -0.50 0.00 050 1.00
Joystick Right Y Joystick Right X Joystick Right Y
Button A

Time (Seconds) Time (Seconds)

Network Tables: Disconnected

Connecting to Network Tables

Borrowed and modified a library written by Team 3015

Connects to the robot over a websocket channel with the Network
Tables protocol

Network Tables Terms

Topic — The name of a data entry
Subscription — A receiver for a topic's data

Client — A program that connects to Network Tables

Code for Initializing Connection

o090 elastic_dashboard - nt4.dart

1
2
3
4
5
6
7
8
2]

10
11
12
13
14

_clientId = Random().nextInt(99999999);
String mainServerAddr = 'ws://$serverBaseAddress:5818/nt/elastic’;

_mainWebsocket = WebSocketChannel.connect(Uri.parse(mainServerAddr),
protocols: ['networktables.first.wpi.edu']);

try {
await _mainWebsocket!.ready;

} catch (e) {
// Failed to connect... try again
Future.delayed(const Duration(seconds: 1), wsConnect);
return;

00 elastic_dashboard - nt4.dart

i L
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

_mainWebsocket!.stream.listen(
(data) {
// Prevents repeated calls to onConnect and reconnecting after changing ip addresses
if (!_serverConnectionActive &&
mainServerAddr.contains(serverBaseAddress)) {
lastAnnouncedValues.clear();

for (NT4Subscription sub in _subscriptions.values) {
sub.currentValue = null;

}

_serverConnectionActive = true;

onConnect?.call();
}
_wsOnMessage(data);
}J
onDone: _wsOnClose,
onkrror: (err) {
if (kDebugMode) {
print('NT4 ERR: $err');
}
}J
)

O 00N OV A wWwN R

Code for Streaming Incoming Data

o0 elastic_dashboard - nt4.dart

if (method == *announce') { elastic_dashboard - nt4.dart
NT4Topic? currentTopic;
for (NT4Topic topic in _clientPublishedTopics.values) { var u = Unpacker.fromList(data);
if (params['name'] == topic.name) {
currentTopic = topic; bool done = false;
} while (!done) {
try {
var msg = u.unpackList();

}

NT4Topic newTopic = NT4Topic(
name: params|[‘name’],
type: params['type’], int topicID = msg[@] as int;
id: params['id'], int timestampUS = msg[1l] as int;
pubUID: params['pubid’'] ?? (currentTopic?.pubUID ?? 0), var value = msg[3];
properties: params['properties’]);

announcedTopics[newTopic.id] = newTopic; if (topicID >= @) {

NT4Topic topic = announcedTopics[topicID]!;

lastAnnouncedValues[topic.name] = value;

for (NT4Subscription sub in _subscriptions.values) {
if (sub.topic == topic.name) {

for (final listener in _topicAnnouncelisteners) {
listener.call(newTopic);
j
else if (method == 'unannounce') {
NT4Topic? removedTopic = announcedTopics[params['id']]; sub.updateValue(value);
if (removedTopic == null) { }
if (kDebugMode) { }
print(} else if (topicID == -1) {
"[NT4] Ignorining unannounce, topic was not previously announced'); _rttHandleRecieveTimestamp(timestampUS, value as int);
} } else {
ERUER if (kDebugMode) {

NOUNCEdTop3 Coirenon S Emered [opcridy; print('[NT4] ignoring binary data, invalid topic ID');

else if (method == 'properties') { }

else { }

if (kDebugMode) { catch (err) {
print('[NT4] Ignoring text message - unknown method $method'); done = true;

}

return;

Saving Bandwidth

Only subscribe to Network Tables topics that are necessary for
displaying information the dashboard needs

Share Network Tables subscriptions between widgets

Once subscriptions are no longer used by widgets, unsubscribe to
conserve bandwidth

1
2
e
4
5
6
7
8
2

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

elastic_dashboard - nt4.dart

NT4Subscription subscribe(String topic, [double period = 0.1]) {
NT4Subscription newSub = NT4Subscription(
topic: topic,
uid: getNewSubUID(),
options: NT4SubscriptionOptions(periodicRateSeconds: period),

)

if (_subscribedTopics.contains(newSub)) {

NT4Subscription subscription = _subscribedTopics.lookup(newSub)!;

subscription.useCount++;

return subscription;

}

newSub.useCount++;

_subscriptions[newSub.uid] = newSub;
_subscribedTopics.add(newSub);
_wsSubscribe(newSub);

if (lastAnnouncedValues.containsKey(topic)) {
newSub. updateValue(lastAnnouncedValues[topic]);

}

return newSub;

Code for Subscription Instance Counting

void unSubscribe(NT4Subscription sub) {
sub.useCount--;

elastic_dashboard - nt4.dart

if (sub.useCount <= 0) {
_subscriptions.remove(sub.uid);
_subscribedTopics.remove(sub);
_wsUnsubscribe(sub);

Displaying Data from Network Tables

Stream asynchronous data from network tables
Rebuild widgets as new data is updated

Each widget uses its own data stream to improve performance

Displaying Data Example: Boolean Box

00 elastic_dashboard - boolean_box.dart

@override
Widget build(BuildContext context) {
notifier = context.watch<NT4WidgetNotifier?>();

return StreamBuilder(
stream: subscription?.periodicStream(),
initialData: nt4Connection.getlLastAnnouncedValue(topic),
builder: (context, snapshot) {
bool value = tryCast(snapshot.data) ?? false;

1
2
2
4
)
6
7
8
9

(R
R ®

return Container(
decoration: BoxDecoration(
borderRadius: BorderRadius.circular(15.0),
color: (value) ? trueColor : falseColor,

)
ik

L i e el
N oo R owN

i
);
}

(R
O ©

Feedback and Testing

Tested by several teams at different offseason events, all reporting a
positive experience with suggestions on how to continue improving it

We appreciate all feedback and are open to new ideas!

Thank you!
Any questions?

Download Link + Source Code:

Chief Delphi Announcement Thread:

Source Code Chief Delphi Thread

http://www.github.com/Gold872/elastic-dashboard
http://www.chiefdelphi.com/t/440750

	A simple and modern dashboard for FRC
	Driver Dashboard Options
	Problems with Shuffleboard
	What is Elastic?
	Reason for the Name
	Video Demo
	Why Flutter?
	Goals
	Early Prototypes
	UI Design Iterations
	Connecting to Network Tables
	Network Tables Terms
	Code for Initializing Connection
	Code for Streaming Incoming Data
	Saving Bandwidth
	Code for Subscription Instance Counting
	Displaying Data from Network Tables
	Displaying Data Example: Boolean Box
	Feedback and Testing
	Thank you!�Any questions?

